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Abstract

The present work deals with the natural convection flow and heat transfer from a horizontal plate cooled from

above. Experiments are carried out for rectangular plates having aspect ratios between / ¼ 0:036 and 0.43 and Ray-

leigh numbers in the range 2906Raw 6 3:3 � 105. These values of Raw and / have been selected below those commonly

considered in previous research in view of a future application to the design of printed circuit boards. The plates are

made of two different metals, copper and steel. The choice of a metal is relevant to the present problem because the

plates are heated by means of an electric current. Important variations of the surface temperature are observed along

the transverse direction for the steel plates. The surface of the copper plates is almost isothermal because of the high

thermal conductivity of the metal.

Calculations for a semi-infinite plate are carried out to predict the transverse profiles of the surface temperature and

heat flux and to visualize the structure of the flow. Three-dimensional calculations are also used at a qualitative level to

observe the changes in the flow structure due to the finite length of the plate. Present results are compared with both

previous experimental work and analyses that are based on boundary layer theory. It is shown that analyses for an

infinite boundary layer are not completely applicable to the present problem because of its different physics. The most

relevant feature of the natural convection flow, which is not predicted by boundary layer analyses, is a thermal plume

rising near the center of the plate.

Present heat transfer results differ from previous experimental work because of the lower Rayleigh numbers and

aspect ratios investigated here. The Nusselt number is found to depend on Ranw, with the exponent n ¼ 0:17 being lower

than most of the values reported in the literature. This comparatively low value is related to the transverse conduction

of heat through the air, which becomes increasingly significant as Raw approaches zero. It is shown that such a low-Raw

effect can be accounted for in a physically consistent manner by adding a constant term to the heat transfer correlation.

On the other hand, it is found that the Nusselt number does not significantly depend on the aspect ratio in the range of

/ investigated contrary to what has been previously reported for wider plates.

� 2003 Elsevier Science Ltd. All rights reserved.

Keywords: Heat transfer; Natural convection; Plate

1. Introduction

Applications of natural convection to the cooling of

electronic equipment have received much attention in

the last decades because of its practical interest [1]. The

present investigation was originated during the devel-

opment of a calculation tool for the prediction of the

* Corresponding author. Tel.: +34-977-559640; fax: +34-977-

559691.

E-mail address: xgrau@etseq.urv.es (F.X. Grau).

0017-9310/03/$ - see front matter � 2003 Elsevier Science Ltd. All rights reserved.

doi:10.1016/S0017-9310(03)00010-3

International Journal of Heat and Mass Transfer 46 (2003) 2389–2402

www.elsevier.com/locate/ijhmt

mail to: xgrau@etseq.urv.es


heat transfer from printed circuit boards (PCB�s) used in

the automotive industry [2]. These PCB�s incorporate

a large number of electronic components connected by

a network of metal tracks that transport the electric

charge. Although the electronic components are usually

the source of most of the heat generated in the PCB, the

heating of the tracks by dissipation of electric charge is

by no means negligible. Moreover, part of the heat

generated in the electronic components is transferred to

the tracks nearby. The cooling of the tracks, which in the

worst case is caused by natural convection alone, is

therefore a key factor in the performance of the equip-

ment. Even with the help of today�s powerful computers,

a detailed calculation of the three-dimensional (3D) flow

and heat transfer problem, which is in addition coupled

with the electric field, is still very challenging. Thus, an

approximate evaluation of the heat transfer coefficients

by means of empirical correlations is still to be preferred

in the design of PCB�s, at least at the preliminary level.

Before dealing with the more complex shapes typi-

cally encountered in PCB�s, it was decided to investigate

the problem of an upward facing warm rectangular

plate. A literature survey on natural convection from

horizontal plates [3–15] convinced the authors that this

problem, despite its apparent simplicity, is not fully

characterized yet. In particular, two aspects deserve a

more detailed investigation. First, the possible depen-

dence of the Nusselt number on the aspect ratio,

/ ¼ W =L, for narrow plates, e.g., plates having aspect

ratios below / ¼ 0:10. Second, the characterization of

the heat transfer rates within a range of Rayleigh

numbers of practical interest to the PCB design prob-

lem, namely 102
6Raw 6 106. These two points are fur-

ther discussed in relation to the previous research in the

field.

In the / ! 0 limit, that is, very long or very narrow

plates, the natural convection flow above the plate

should be two-dimensional (2D). This flow consists of a

Nomenclature

A surface area, m2

f function

g acceleration of gravity, m/s2

h heat transfer coefficient, W/m2 K, defined in

Eq. (4)

I intensity, A

k thermal conductivity, W/m K

L length of the plate, m

‘ characteristic length in Eqs. (5) and (6), m

m exponent used in the heat transfer correla-

tions; see Eq. (13)

Nu Nusselt number, Eq. (5)

p pressure, Pa

P perimeter of the plate, m

Pr Prandtl number

q heat transfer rate, W

q00 heat flux, W/m2

Ra� modified Rayleigh number, Eq. (10)

Ra Rayleigh number, Eq. (6)

t time, s

T temperature, K

Uy velocity in the y-direction, m/s

Uz velocity in the z-direction, m/s

W width of the plate, m

x coordinate across the plate length, m

y coordinate across the plate width, m

Dy minimum grid spacing along the y-direction

used in 2D calculations, m

z height coordinate, m

Dz minimum grid spacing along the z-direction

used in 2D calculations, m

DT DT ¼ T s � T1, K

DxTs longitudinal temperature drop along the

surface of the plate, K

Greek symbols

a thermal diffusivity, m2/s

b thermal expansion coefficient, K�1

C C ¼ 1=ð2ð1 þ /ÞÞ ¼ g=W
d thickness of the plate, m

D variation

e emissivity of the surface

/ aspect ratio of the plate, / ¼ W =L
c exponent used in Eq. (7)

h dimensionless temperature, h ¼ ðTmax � T Þ=
ðTmax � T1Þ

g g ¼ A=P , m

q density, kg/m3

m kinematic viscosity, m2/s

r Stefan–Boltzmann constant

Subscripts

cond conduction

conv convection

dis dissipation

max maximum

met metal

rad radiation

1 ambient room conditions

s surface of the plate

w based on the plate width

g based on the area to perimeter ratio, g

Superscript

– average
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thermal plume upwelling at the center of the plate with

air being transported from the edges within two mirror-

symmetric boundary layers [12,15,16]. However, for

plates having a finite length the flow is 3D near the two

ends of the plate. This might result in a dependence of

the Nusselt number on the aspect ratio of the plate [15].

Such dependence is obviated in much of the previous

work where the behavior of a semi-infinite plate is as-

sumed [3,5,6,9–13]. Fig. 1a shows the equations pro-

posed by several authors for the dependence of the

Nusselt number on the Rayleigh number when these

dimensionless groups are based solely on the width of

the plate. Note that correlations in Fig. 1a exhibit dif-

ferent slopes in the logarithmic plot, e.g., different values

of the exponent in the Ranw term. Several of the equations

plotted in Fig. 1a agree fairly well in the range of Ray-

leigh numbers they are devised for, typically 106
6

Raw 6 107. However, dispersion grows dramatically as

the Rayleigh number decreases. For example, at Raw ¼
103 predictions for the Nusselt number range between

Nuw � 1 and 5. Thus, the correlations plotted in Fig. 1a

may be inapplicable to the range of Rayleigh numbers

that is relevant to the present investigation.

Other authors [7,8,15] define Rayleigh and Nusselt

numbers that are based on the area to perimeter ratio, g,

to account for the dependence of Nu on the geometry of

the plate. Heat transfer correlations of this second type

obtained for aspect ratios higher than / ¼ 0:20 are

shown in Fig. 1b. The problem with the correlations

plotted in Fig. 1b is that, as shown in Section 3.2 below,

equations based on the hydraulic radius, g, may not be

applicable to plates having a low /.

The effect of the plate geometry on the Nusselt

number is assessed in the present work by means of

experiments performed for aspect ratios in the range

0:0366/6 0:43. The plates are made of metal, either

copper or steel, and are heated by means of a continuous

electric current. While important transverse temperature

variations are expected for the steel plates [12], the

copper plates should yield almost uniform temperature

distributions because of the much higher thermal con-

ductivity of the metal. Comparison of results for the two

types of plates will therefore show whether the presence

of a transverse temperature drop has an effect on the

structure of the flow and the rate of heat transferred

from the surface.

On the other hand, 2D and 3D calculations are also

performed. Two-dimensional calculations incorporate a

special treatment for the surface of the plate that as-

sumes a uniform heat generation per unit volume within

the metal. This treatment, more realistic than the as-

sumption of either a uniform temperature or a uniform

heat flux, allows the characterization of the transverse

profiles of these two quantities at the plate surface.

Calculations also provide a picture of the natural con-

vection flow and allow establishing comparisons be-

tween predictions and both present measurements and

previous theory.

The remainder of the paper is organized as follows.

The experimental setup and techniques used are pre-

sented in Section 2. The different analytical and calcu-

lation methods employed to obtain and analyze current

results are discussed in Section 3. The results of the

present investigation are presented and discussed in

Section 4. Finally, conclusions are drawn in Section 5.

2. Experimental apparatus and procedures

Thirty-five lm thick copper plates and 50 lm thick

steel plates are used in the experiments. Each plate fea-

tures a rectangular test area of length L and width W in

contact with air. The aspect ratio of the plates, / ¼
W =L, ranges between / ¼ 0:036 and 0.43, as listed in

Table 1. The bottom face of the plates is attached to a

1.5 mm thick layer of fiberglass, as shown in Fig. 2a. In

turn, the fiberglass layer is supported on a 3.0 cm thick

(a)

(b)

Fig. 1. Published heat and mass transfer correlations for nat-

ural convection from horizontal plates. The plate width, W , is

used as the characteristic length in (a) while the correlations in

(b) use the area over perimeter ratio, g.
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block of extruded polystyrene (Glascofoam-DOW,

k ¼ 0:052 W/m K); see Fig. 2b. The plate and insulation

block ensemble is embedded in a topless Plexiglas box

34 cm � 12 cm � 5 cm ðx; y; zÞ.
The two plate ends, where cables and connectors are

jointed, are bent 45� downwards and covered by the two

sliding lids. This setup allows air to enter the region

above the test area both from the sides and longitudi-

nally, e.g., traveling above the two sliding lids. Thus, a

3D-flow structure should be expected near the plate

ends. Moreover, in order to rule out undesired effects

that would complicate the physics of the problem, the

longitudinal temperature drop along the surface of the

plate, DxTs, is checked during the experiments. This

temperature drop is very low for the copper plates,

namely DxTs 6 0:01DT , and comparatively higher for the

steel plates because of the lower thermal conductivity of

the metal. Here, DT is the difference between the average

temperature of the plate surface and the ambient air

temperature. Notwithstanding, in the latter case the

longitudinal variation of temperature remains below

DxTs 6 0:05DT for moderate values of DT .

The experimental apparatus is mounted on a per-

fectly horizontal table. A much bigger bottomless

84 cm � 70 cm � 50 cm Plexiglas box is placed on the

table so that it symmetrically surrounds the experi-

mental apparatus and a big volume of air around it.

This arrangement ensures that no external disturbances

in the room air interfere with the experiments. It has

been verified that experimental results can be repro-

duced in the absence of the big box if the air in the room

remains undisturbed. The plates are heated by means of

a continuous electric current provided by an analog

programmable power supply (HP-6541A, 0–8 V/0–20

A). The room ambient temperature is controlled by a

heat-pump system. Temperatures are measured using

type-K thermocouples that are monitored in a data

acquisition unit (HP-34970A) that is in turn connected

to a personal computer. Heat losses through the bottom

fiberglass layer are measured using episensors (Vatell

Table 1

Summary of the plate dimensions used in the present experi-

ments

Metal L (cm) W (cm) / ¼ W =L

Copper 28.0 1.0 0.036

Copper 23.0 1.0 0.043

Copper 14.0 1.0 0.071

Copper 23.0 2.0 0.087

Copper 28.0 2.5 0.089

Copper 23.0 2.5 0.109

Stainless steel 23.0 2.5 0.109

Stainless steel 23.0 3.0 0.130

Copper 14.0 2.0 0.143

Copper 23.0 4.0 0.174

Stainless steel 23.0 4.0 0.174

Copper 14.0 2.5 0.179

Copper 28.0 5.0 0.179

Stainless steel 23.0 5.0 0.217

Copper 23.0 6.0 0.261

Copper 25.4 7.62 0.300

Copper 23.0 9.0 0.391

Copper 14.0 6.0 0.429

Fig. 2. Sketch of the experimental setup used in the present investigation.
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Corporation). The primary output from the episensor is

a heat flux measurement that is obtained from a ther-

mopile heat flux sensor with high sensitivity and a low

thermal resistance that occupies most of the surface area

on the sensor face. The sensor acts like a differential

voltage source with the value of the voltage being pro-

portional to the heat flux and its time of response is

below 6 ls.

Thermochromic liquid crystals (TLC�s) are used to

check the thermocouple readings and, especially, to

measure the transversal temperature profiles which

show, in the case of the steel plates, important variations

of Ts. Microencapsulated chiral-nematic TLC�s (manu-

factured by Hallcrest LC Technology) with a narrow

band of approximately 5 K are employed to measure

temperature between 293 and 313 K. The accessory

equipment consists of a calibration unit, a RGB video

camera (Sony DXC-151) connected to a personal com-

puter, a 250 W white light focus and the corresponding

software [17]. The emissivities of the copper and TLC

surfaces are measured with the help of a reference black

surface of known emissivity and a radiometer. Emis-

sivity values of e ¼ 0:174 � 0:004, e ¼ 0:902 � 0:008

have been measured for the copper and TLC surfaces,

respectively. The steel plates are always coated with a

TLC layer in order to measure the surface temperature,

which, as mentioned above, features important varia-

tions in the y-direction.

3. Analysis and data reduction

3.1. Energy balance

The steady-state energy balance for a heated plate

may be written as:

qconv ¼ qdis � qrad � qcond ð1Þ

In order to evaluate qconv, the rate of heat transferred

from the plate surface into the air, it is therefore nec-

essary to evaluate each of the terms in the right-hand-

side (RHS) of Eq. (1). The physical properties of air are

evaluated at the film temperature. The heat generated by

Joule effect is obtained from the measured potential

drop. The uniformity of the voltage drop per unit of

longitudinal distance, DV =Dx, along the transversal po-

sition, y, is evidenced by measurements. The rate of heat

dissipation is therefore calculated as:

qdis ¼ DV I ð2Þ

The heat radiation term is estimated from the Stefan–

Boltzmann law. The radiation heat exchange between

the plate surface and its surroundings is evaluated ac-

cording to:

q00rad ¼ re T 4
s

�
� T 4

1
�

ð3Þ

In the experiments with steel plates, where important

variations of the surface temperature are observed, the

heat radiation term, qrad, is obtained by integration along

the y-direction of the local heat flux values given by Eq.

(3). The heat losses by conduction through the bottom of

the plate are measured, as discussed above, using epis-

ensors. Unfortunately, the smallest episensors available

are 2.5 cm wide so that an indirect method has to be used

for narrower plates. It has been checked that the qcond

values measured from plates with W P 2:5 cm are satis-

factorily predicted by solving the heat conduction

equations within the insulation block. This approach,

which also includes the use of measured temperature

values to characterize the boundary conditions, is used to

evaluate the qcond term for the narrower plates.

3.2. Correlation of heat transfer data

The values of the convection heat fluxes obtained

from Eq. (1) are used to evaluate the corresponding

average heat transfer coefficients,

�hh ¼ qconv

ADT
ð4Þ

Non-dimensional groups relevant to the character-

ization of the heat transfer coefficient are the Nusselt

number, Nu, the Rayleigh number, Ra, and the Prandtl

number, Pr. Both Ra and Nu are based on a character-

istic length of the problem, ‘,

Nu ¼
�hh‘
k

ð5Þ

Ra ¼ gb
m2

� �
DT ‘3Pr ¼ gb

am

� �
DT ‘3 ð6Þ

The relation between the three dimensionless groups,

Ra, Nu and Pr, is generally given in the form:

Nu ¼ CRanPrc ð7Þ

The dependence of the Nusselt number on the Pra-

ndtl number will be dropped hereinafter since air is the

only fluid of interest in the present investigation. The

boundary layer analysis of natural convection from a

horizontal surface [18] suggests a value of c ¼ 0:05 in

Eq. (7) thus yielding variations in the Prc term between

0.89 for Pr ¼ 0:10 and 1.12 for Pr ¼ 10. A more complex

dependence of Nu on Pr is given in Ref. [6].

As discussed above, the length definitions commonly

used in Eqs. (5) and (6) are the width of the plate, ‘ ¼ W ,

and the area to perimeter ratio, ‘ ¼ g. The latter length

is used, among other authors [7,8], by Lewandowski

et al. [15] who have recently proposed the following

correlation:

Nug ¼ 0:774Ra0:20
g 5 � 104

6Rag 65 � 106; 0:216/61

ð8Þ
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Among the published heat transfer correlations based

on the plate width [3,5,6,9–14], the most frequently ref-

erenced is probably the one provided by Sparrow and

Carlson [12], which can be written as,

Nuw ¼ CRanw ð9Þ

with C ¼ 1:08 and n ¼ 1=5. It must be pointed out that

Sparrow and Carlson [12] actually use a modified Ray-

leigh number defined as,

Ra� ¼ gb
amk

q00convW
4 ð10Þ

and that their original correlation is given in the form,

Nuw ¼ 1:07ðRa�Þ1=6
2:7 � 106

6Ra� 6 2:3 � 107 ð11Þ

It is easy to see that Eqs. (5), (6) and (11) can be

combined to obtain Eq. (9). In order to unify the

treatment for semi-infinite and finite plates, equations

based on g may be written in a different manner:

g ¼ LW
2ðLþ W Þ ¼ W

L
2ðLþ W Þ ¼ W

1

2ð1 þ /Þ

� �
) Nug ¼ NuwC; Rag ¼ RawC3 ð12Þ

Nuw ¼ CRanwC3n�1 ¼ CRanwCm ð13Þ

Nuw ¼ Cf ð/ÞRanw ð14Þ

It is worth to note that the form of Eq. (14) may also

be inferred from a dimensional analysis. Comparison of

the last two equations suggests that the condition

f ð/Þ ¼ Cm ¼ C3n�1 in Eq. (13) is a constraint arising

from the choice of g as the characteristic length in Eqs.

(5) and (6). The more general form of Eq. (14) illustrates

better than Eq. (13) the idea behind the use of a geo-

metrical parameter in heat transfer correlations. As /
increases, the term f ð/Þ should play a progressively

more important role in Eq. (14). As an example, in the

correlation of Lewandowski et al. [15], Eq. (8), the ge-

ometry function ranges between Cf ð/Þ ¼ 1:11 for

/ ¼ 0:215 and Cf ð/Þ ¼ 1:35 for / ¼ 1. Correlations

that are solely based on the plate width, e.g., Eq. (9)

above, can be understood as a particular case of Eq. (14)

in the limit of f ð/Þ ! 1 as / ! 0.

The form commonly used to correlate heat transfer

data [4,7,8,15] is not Eq. (14) but rather that of Eq. (8)

e.g., Nug ¼ CRang. If Eq. (13) is written as,

ðNuwCÞ ¼ Nug ¼ CRang ¼ C RanwC3n
� �

ð15Þ

it becomes clear that a plot of Nug vs. Rag stresses the

influence of the geometry since both the ordinate and the

abscissa are a function of C. The inconvenient of Eq.

(15) when fitting data by least squares is that the sta-

tistical weight of the n exponent is diminished. This

point is illustrated by the simple numerical experiment

that is discussed in what follows. The data points shown

in Fig. 3 are generated numerically by first assuming

a set of Raw values uniformly distributed within a

range similar to that observed in the present experi-

ments. The values of Nuw are then computed according

to Sparrow and Carlson�s correlation [12], e.g., Eq. (9)

with C ¼ 1:08 and n ¼ 1=5. Note that this proce-

dure generates values of Nuw that do not depend on the

aspect ratio. The corresponding values of Rag and Nug

are computed by assigning values of C in the range

0:306C6 0:50 ð06/6 2=3Þ, as indicated by the sym-

bols in the plots. The imposed presence of the aspect

ratio in Fig. 3 falsifies the dependence of Nuw on Raw.

The best fit to data in Fig. 3 is Nug ¼ 1:054Ra0:152
g . Al-

though this equation can be used to obtain predictions

of Nuw within �5% of the original synthetic values, the

exponent n ¼ 0:152 is remarkably lower than the origi-

nal n ¼ 1=5.

Obviously, a multi-linear regression analysis of the

numerical data based on Eq. (14) with f ð/Þ ¼ Cm or

f ð/Þ ¼ /m yields m ¼ 0 so that the original C ¼ 1:08

and n ¼ 1=5 constants are perfectly recovered. The use

of Eq. (15) in Fig. 3 induces however a false dependence

of Nuw on C�0:54. Thus, even though Eq. (9) would ap-

pear as a particular case of Eq. (15) for / ! 0, the latter

equation cannot be safely applied when Nuw does not

actually depend on the area to perimeter ratio, g. The

more solid Eq. (14) is therefore used to analyze the

present heat transfer data.

3.3. Calculations

Two-dimensional calculations of the natural con-

vection flow and heat transfer are performed using the

computing unsteady three-dimensional elliptic flows

(CUTEFLOWS) numerical algorithm [19]. The code

Fig. 3. Plot of synthetic heat transfer data generated according

to Eq. (9) with C ¼ 1:08 and n ¼ 1=5. A value of the geomet-

rical parameter C is associated to each data point as indicated

by the symbols.
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solves a discrete form of the differential conserva-

tion equations of mass, momentum and energy. These

equations may be written, in the context of Fig. 4, as:

mass:

oUy

oy
þ oUz

oz
¼ 0 ð16Þ

y-momentum:

q1
oUy

ot

 
þ
oU 2

y

oy
þ oUzUy

oz

!

¼ � op
oy

þ l
o2Uy

oy2

�
þ o2Uy

oz2

�
ð17Þ

z-momentum:

q1
oUz

ot

�
þ oUyUz

oy
þ oU 2

z

oz

�

¼ � oðp þ q1gzÞ
oz

þ q1gbðT � T1Þ þ l
o2Uz

oy2

�
þ o2Uz

oz2

�
ð18Þ

energy:

oT
ot

þ oUyT
oy

þ oUzT
oz

¼ a
o2T
oy2

�
þ o2T

oz2

�
ð19Þ

Note that the effect of buoyancy is introduced in Eq.

(18) by means of the Boussinesq assumption. The cal-

culation algorithm solves the discrete form of Eqs. (16)–

(19) by means of a second-order accurate finite-volume

scheme (details of the algorithm may be found in Ref.

[19]). The code has been successfully benchmarked and

used in calculations of either isothermal flows and nat-

ural and mixed convection flows; see Ref. [20] and the

references therein.

The dimensions of the 2D-calculation domain, sket-

ched in Fig. 4, match those in the experimental setup,

e.g., the side and height of the urn, 70.0 cm in the y-

direction and 50.0 cm in the z-direction. Boundary

conditions prescribed at the plate surface are more re-

alistic than either the uniform temperature or the uni-

form heat flux condition. In the context of Figs. 1 and 4,

the energy balance (1) is locally imposed within each

calculation cell at the surface boundary, that is,

k1
oT
oz

����
s

¼ q00dis � reðT 4
s � T 4

1Þ � q00cond

��
z
� kmetd

Dy
oTs

oy
s

ð20Þ

where Dy is the width of the calculation cell, d is the

thickness of the metal plate and kmet is its thermal con-

ductivity. The values of the vertical conduction losses,

the third term on the RHS of Eq. (20), and the heat

generated per unit surface, q00dis, are taken from mea-

surements. The most relevant feature in Eq. (20) is in the

last term of the RHS, which accounts for the transversal

conduction of heat within the metal plate. At each time

step, the discrete form of Eq. (20) is solved iteratively to

update the transverse temperature profile. In all the

cases investigated, a steady-state solution is reached

after a sufficiently long integration period.

The number of calculation nodes is 61 in the z-
direction and ranges between 61 (for W ¼ 1:0 cm) and

121 (for W ¼ 6:0 cm) in the y-direction. The calculation

grids, both in the y and z directions, are considerably

refined near the plate where the strongest velocity and

temperature gradients occur. Test calculations have

been carried out on finer grids in order to assess the

influence of the grid size on the numerical results. Fig. 5

presents two instances of such test calculations for a

copper plate with W ¼ 6:0 cm at Ra ¼ 1:1 � 105 and a

steel plate with W ¼ 5:0 cm at Ra ¼ 5:8 � 104. Results

in Fig. 5a have been obtained with the standard grid of

61 nodes along the z-direction, corresponding to a

minimum spacing of Dz ¼ 2:5 � 10�4 m. Four different

grids have been tested for the y-direction. The coarsest

of these y-grids has a minimum spacing equal to

Dy ¼ 4:0 � 10�3 m. In the three finer y-grids, the value

of Dy is successively halved by doubling the number of

y-calculation nodes. The dependence of the predicted Nu
values on the grid spacing is very similar for the copper

and the steel plates. Results in Fig. 5a for the coarsest y-

grid are about 3% below the reference value, Nu0, ob-

tained from extrapolation to the Dy ! 0 limit. The three

finer grids yield heat transfer predictions in much closer

agreement with the reference value in Fig. 5a. The value

of Dy ¼ 1:0 � 10�3 m is chosen for the standard y-grid

in a good balance between accuracy and economy. This

choice of Dy results in a grid with 121 nodes along the y-

direction for plates with W ¼ 6:0 cm.

Fig. 4. Schematic of the geometry and boundary conditions

prescribed in the 2D calculations of the natural convection flow

over a semi-infinite plate of width W . Note that the drawing is

not to scale.
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The Nu values shown in Fig. 5b have been obtained

with the standard y-grid of Dy ¼ 1:0 � 10�3 m and four

different z-grids. The largest value of the minimum grid

spacing is Dz ¼ 1:0 � 10�3 m in this case, corresponding

to a z-grid with only 16 nodes. This value of Dz is again

successively halved in the three finer grids by doubling

the number of nodes. The coarsest z-grid yields results

that are almost 2% above the reference Nu0 value in Fig.

5b. The finer z-grids yield considerably better predictions

and the results in Fig. 5b suggest Dz ¼ 2:5 � 10�4 m as a

proper choice for the standard z-grid. The conditions of

W and Ra in the calculations of Fig. 5 have been chosen

as most representative of the heat transfer results pre-

sented in Section 4.2 below. However, some of the re-

sults presented in there correspond to Rayleigh numbers

as high as Ra ¼ 2 � 106. For these most exigent calcu-

lations, it has been found that the standard grids yield in

the worst case predictions of Nu that differ in less than

3% from the corresponding results obtained on the finest

grids.

In addition to the 2D calculations, several 3D cal-

culations have also been performed using commercial

software (FLUENT). Such 3D calculations are used at a

qualitative level to visualize the 3D-flow structure in

plates of a finite length and thus to complement the

simplified picture of the flow structure given by 2D

calculations.

4. Results and discussion

Experiments are carried out for the copper and steel

plates listed in Table 1. The range of Rayleigh numbers

covered is 2906Raw 6 3:3 � 105. Every plate is operated

at several values of the electrical intensity, I , provided by

the source. Measurements obtained from a given plate

are then repeated two more times, normally at different

days, for the same intensity values. The plates can be

operated properly only within a certain range of the

temperature drop, DT , which in most cases falls within

the range 3:06DT 6 20 K. Results are not satisfactorily

reproduced for too low DT because of the uncertainty in

the measurement of temperatures using either thermo-

couples or TLC�s. As mentioned above, it is not possible

to maintain the longitudinal isothermicity of the plate

when it is operated at too high values of DT . The ex-

perimental procedure thus results in a limited range of

Rayleigh numbers associated to each plate width. Note

however that the widths of the plates listed in Table 1

Fig. 6. Transverse profiles of several properties at the surface of

a copper and a steel plate. Measured and calculated tempera-

ture profiles are compared in (a). The corresponding predictions

of the local heat fluxes are shown in (b). Both measure-

ments and predictions have been obtained for plates of width

W ¼ 4:0 cm.

Fig. 5. Assessment of the influence of the grid spacing along the

y (a) and z (b) directions on predicted Nusselt numbers in two-

dimensional calculations. Results in this figure correspond to a

copper plate of W ¼ 6:0 cm at Ra ¼ 105,000 and a steel plate of

W ¼ 5:0 at Ra ¼ 58,000. The Nu0 symbol stands for values of

the Nusselt number that are extrapolated from the numerical

predictions into the limit of zero grid spacing.
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guarantee that a broad range of Raw is covered on the

overall. Calculations have been performed in the range

of Rayleigh numbers with 1:1 � 103
6Raw 6 1:6 � 106

for copper and steel plates of widths W ¼ 1:0, 2.5, 4.0,

and 6.0 cm.

4.1. Flow structure and surface profiles

Two-dimensional calculations allow visualizing the

structure of the flow and provide, thanks to the use of

the boundary condition of Eq. (20), distributions of the

temperature and the heat flux at the plate surface. Fig.

6a shows predicted and measured transverse profiles of

temperature for a copper and a steel plate of width

W ¼ 4:0 cm. The corresponding transverse profiles of

the surface heat flux are shown in Fig. 6b. The structure

of the 2D flow in the region surrounding the plates is

shown in Fig. 7a and b for the copper and the steel plate,

respectively.

Calculations and measurements in Fig. 6a show im-

portant transverse variations of temperature at the sur-

face of the steel plate, as is also reported by Sparrow and

Carlson [12]. There is a good agreement between the

measured and the predicted temperature profile. The

increase of the surface temperature along the y-direction

in Fig. 6a is accompanied, as shown in Fig. 7b, by the

Fig. 7. Structure of the flow and temperature distribution of the air in the vicinity of the (a) copper and (b) steel plate for the same 2D

calculations as in Fig. 6 above.
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warming of the air traveling inwards near the surface of

the plate. The flow structure and temperature contours

shown in Fig. 7b are not very different from the corre-

sponding ones for the copper plate, shown in Fig. 7a.

However, the temperature profile at the surface of the

copper plate is much flatter in Fig. 6a than it is for

the steel plate. Such a difference is explained in terms of

the transverse conduction of heat within the metal,

represented by the last term in the RHS of Eq. (20).

Because of the high thermal conductivity of copper, a

significant amount of heat is being conducted from the

center toward the edges of the plate.

The transverse variations of the local heat flux,

shown in Fig. 6b, are very pronounced for both plates.

Heat is transferred very efficiently from the surface near

the edges of the plate where the air is still cold. The ef-

ficiency of the heat transfer from the surface decreases

rapidly as the air travels inwards and it becomes pro-

gressively warmer (see Fig. 7). The local heat fluxes in

Fig. 6b reach their minimum value at the center of the

plate where warm air raises forming a plume. Note in

Fig. 6b that the heat flux profile for the steel plate is

essentially flat within a relatively wide region of the y-

domain between the edge and the center of the plate. It

seems therefore reasonable to compare, following

Sparrow and Carlson [12], results for the steel plate with

previous analyses for a uniform heat flux at the surface

[18]. The corresponding profiles in Fig. 6a and b suggest

that the surface distribution for copper plates be better

approximated by the uniform temperature boundary

condition.

Considering that such approximations to the two

ideal surface conditions hold, calculated profiles of the

local Nusselt number, Nuy , are compared to the analyses

of Pera and Gebhart [18] for a uniform temperature and

a uniform heat flux in Fig. 8a and b, respectively. The

analytical profiles have been obtained for a boundary

layer that grows undisturbed along the y-direction.

However, the calculated flows in Fig. 7a and b separate

from the surface as they approach the center of the plate,

thus quite a different physical situation. Near the center

of the plate, the transfer of heat from the surface into the

air is hindered by the flow separation that is observed in

Fig. 7a and b.

On the other hand, three-dimensional calculations

provide a more complete picture of the structure of the

natural convection flow over a plate of finite length. Fig.

9 shows the streamlines computed in a 3D calculation

for a plate with W ¼ 6:0 cm and L ¼ 23:0 cm. A uniform

temperature distribution at the surface of the plate has

been assumed for this particular calculation. Similar

flow structures are also obtained from 3D calculations

with a uniform heat flux at the surface and with a

transverse temperature profile taken from measure-

ments. The structure of the flow near the two plate ends

is three-dimensional, but, on the overall, the flow suffers

no dramatic change with respect to the 2D structure of

Fig. 7a. As is shown in what follows, the three-dimen-

sionality of the flow portrayed in Fig. 9 seems to have

little effect on the overall heat transfer rates.

4.2. Average heat transfer coefficient

Present values of the heat transfer coefficient have

been fitted, as discussed in Section 3.2 above, in the form

of Eq. (14). Regression analyses with both f ð/Þ ¼ /m

and f ð/Þ ¼ Cm show that the present heat transfer data

do not correlate with the aspect ratio of the plate. The

values of the m exponent in the best fit are non-signifi-

cant, e.g., their (absolute) value is small and the null

hypothesis, m ¼ 0, cannot be rejected. Moreover, the

resulting equations fit data no better than does the

correlation obtained by fixing f ð/Þ ¼ 1. Thus, the sim-

pler form of Eq. (9) has been chosen to present the re-

Fig. 8. Transverse profiles of the local Nusselt number, Nuy ,
based on the distance from the edge of the plate. The calculated

profile for a copper plate is compared in (a) with the boundary

layer analysis [18] for the case with a uniform surface temper-

ature. The calculated profile for a steel plate is compared in (b)

with the boundary layer analysis for the case with a uniform

surface flux [18]. Calculations correspond to the same condi-

tions as in Figs. 6 and 7 above.
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sults in Fig. 10a where numerical predictions are also

included. The best fit to data in Fig. 10a is:

Nuw ¼ 1:23Ra0:173
w ð21Þ

The best fit to experimental data alone yields similar

values of C ¼ 1:20 and n ¼ 0:175. A very good fit with

C ¼ 1:28 and n ¼ 0:167 is obtained from 2D calcula-

tions. Thus, there is a good agreement between the

measured and the predicted heat transfer coefficients

shown in Fig. 10a. It is noteworthy that despite of the

different results for the copper and the steel plate in Figs.

6 and 7 above, no significant dependence on the type of

metal is observed in Fig. 10a.

Since Eq. (21) does not account for a dependence of

the Nusselt number on the aspect ratio, it appears to

contradict the results reported by Lewandowski et al.

[15]. It should be noted that present experiments and

those of Lewandowski et al. share only the range of

aspect ratios with 0:216/6 0:43. Within this range, the

geometry function proposed by Lewandowski et al.,

equivalent to f ð/Þ ¼ C�0:40 in Eq. (14), varies in about

7%. This percentage of variation in Nuw is lower than the

relative width of the 95% prediction-interval for the fit of

Eq. (21), which is about �11%. Thus, a dependence of

Nuw on the aspect ratio cannot be ruled out for the plates

with the largest ratios investigated. Notwithstanding, it

can be said that although the 3D flow pictured in Fig. 9

differs from the ideal 2D flow of Fig. 7 near the two plate

ends, such a departure has little effect on the overall heat

transfer rates. Far enough from the two ends, heat is

transferred from the surface into the air as efficiently as

it would be for a semi-infinite plate.

On the other hand, present measurements and cal-

culations yield a value of n � 0:17 in Eq. (21) that is

significantly below the theoretical exponent, n ¼ 1=5. In

this respect, it might be argued that the analyses in Ref.

[18] are not fully applicable to the present problem, as

suggested by Fig. 8. However, it must be recognized that

the heat transfer data reported by Sparrow and Carlson

[12] and Lewandowski et al. [15] are well fitted by the

n ¼ 1=5 exponent. The difference between present results

and the measurements by these authors, who worked

mainly in conditions such that Raw P 106, is to be at-

tributed to the different range of Rayleigh numbers in-

vestigated. A low value of the n exponent is also

predicted by Chambers and Lee [14], whose calculations

yield n ¼ 0:138 for Raw 6 1400. A similar drop in the

exponent with decreasing Rayleigh number has been

reported for other natural convection flows. Examples

are found in the measurements of McAdams [4] and

Morgan [21] for long horizontal cylinders, and McAd-

ams for vertical plates [4].

Such a behavior of the Ranw term has to be related to

the physics of the problem. At low Rayleigh numbers,

the transverse diffusion of energy, represented in the

RHS term of Eq. (19), is not negligible with respect to

the convective transport terms. In the boundary layer

equations, the transverse diffusion terms are however

dropped [16,18,22]. It is consequently assumed that all

of the heat transferred from the plate surface is trans-

ported along the y-direction by the fluid motion alone.

When the Rayleigh number is low, the fluid motion is

slow and the rate of heat transfer from the solid surface

is constrained by the inability of the flow to convect

Fig. 9. Flow streamlines computed from a 3D calculation carried out with the Fluent software. The plate considered in the calculation

is W ¼ 6:0 cm wide and L ¼ 23:0 cm long and its surface is assumed to be at a uniform temperature.
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energy away. This is why boundary layer analyses yield

the physically inconsistent limit of Nu ! 0 as Ra ! 0. In

order to illustrate the effect of the transverse diffusion

term in Eq. (19), a second set of 2D calculations has

been carried out with this particular term artificially set

to zero. Heat transfer predictions obtained from these

altered calculations are compared in Fig. 10b with those

obtained from the regular calculations, already included

in Fig. 10a. The absence of the transverse diffusion term

results in a significant variation of the heat transfer be-

havior as the parameters of the best fit change from

C ¼ 1:28 and n ¼ 0:167 into C ¼ 0:616 and n ¼ 0:218.

In the real flow, diffusion along the y-direction is a

feasible mechanism for removing heat away from the

region above the plate. It follows that a purely con-

ductive regime should be reached in the Ra ! 0 limit so

that the Nusselt number should tend to a constant value

as the Rayleigh number approaches zero. A common

way to include low-Ra effects in heat transfer correla-

tions for natural convection flows is the addition of a

constant term to the RHS [23–26]. In this line, an al-

ternative form to Eq. (9) is given by:

Nuw ¼ K þ CRanw ð22Þ

A different explanation is also found in the literature

for the use of the K constant in Eq. (22). The similarity

method, commonly used in boundary layer theory,

suggests that the K constant symbolizes a shift in the y-

origin with respect to the edge of the plate [27].

Since the influence of the y-diffusion term of Eq. (19)

diminishes as the Rayleigh number increases, Eq. (22)

would eventually tend to Nuw � CRanw, e.g., Eq. (9)

above for sufficiently large values of Raw. Thus, heat

transfer data that is compatible with previous analyses

in [18] and measurements in [12,15] ought to be well

fitted by Eq. (22) with n ¼ 1=5. Present results meet this

requirement, as shown in Fig. 11a where the difference

ðNuw � KÞ is plotted against Raw. The corresponding

plot for the 2D calculations alone is presented in Fig.

11b. By fixing the exponent to the theoretical value of

n ¼ 1=5, a good fit to data in Fig. 11a is given by

K ¼ 0:78 and C ¼ 0:820. The corresponding fit to the

numerical predictions in Fig. 11b yields K ¼ 1:12 and

Fig. 10. Average heat transfer coefficients, cast in the form of

Nuw, are plotted as a function of the average Rayleigh number,

Raw. Measurements and predictions are presented together in

(a). Two-dimensional calculations are presented in (b). A sec-

ond set of calculations is included in (b) where the transverse

diffusion term in the energy equation (19) is neglected.

Fig. 11. The same heat transfer data as in Fig. 10 above is

plotted in a form suitable to Eq. (22). The values of the K
constant are K ¼ 0:78 and (a) and K ¼ 1:12 in (b).
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C ¼ 0:754. Since the fit with n ¼ 1=5 to the data in Fig.

11a is almost as good as that of Eq. (21), it might be

alternatively used to evaluate Nuw within the range of

parameters investigated in the present work.

Moreover, the above fits with the n ¼ 1=5 exponent

can be compared with the corresponding theoretical

expressions given in [18] if the K constant is dropped

from Eq. (22). The present value of C ¼ 0:82 compares

well with the corresponding theoretical prediction of

C ¼ 0:85 for an isothermal surface [18]. The theoretical

analysis with a uniform heat flux at the surface [18]

yields a somewhat higher value of C ¼ 0:93. As shown in

Fig. 6 above, the real boundary condition at the plate

surface does not correspond either to the uniform tem-

perature or to the uniform heat flux ideal assumptions.

In addition, it should be kept in mind that the present

problem is physically different from the one that is

treated in the boundary layer analyses. In this respect,

Pera and Gebhart [18] themselves report discrepancies

between their analytical results and their own measure-

ments. The authors attribute such discrepancies mainly

to the separation of the flow from the surface, forming a

rising thermal plume.

5. Conclusions

Measurements and calculations have been performed

for the natural convection flow and heat transfer from

horizontal plates cooled from above. Thinking of a fu-

ture application to the design of printed circuit boards,

the values considered of the Rayleigh number and the

aspect ratio of the plate are below those investigated in

previous works. Calculations are used to predict the

structure of the flow and the local distribution of

properties at the surface of the plate. The main flow

structure consists of two opposing inward flows from

the edges that meet at the center of the plate where

warm air raises forming a thermal plume. The flow

separation near the center of the plate considerably

hinders the ability of the flow to remove heat from the

surface. The implementation of boundary conditions

that are appropriate to the problem of interest, e.g., a

uniform heat generation per unit volume within the

plate, reveals that the surface is neither isothermal nor

of a uniform flux. Notwithstanding, the surface tem-

perature predicted for copper plates is, due to the high

conductivity of the metal, close to a uniform distribu-

tion. Important transverse gradients of temperature are

measured and predicted for the steel plates instead.

Neither a uniform temperature nor a uniform heat flux

is a good model for the conditions at the surface of the

steel plates, although the latter is probably closer to

reality. Away from the edges and the center of the plate,

the heat flux from the surface of the steel plate is es-

sentially uniform.

Present experiments reveal no significant dependence

of the Nusselt number on the aspect ratio of the plate.

This observation seems to differ from part of the prior

work on the subject, probably because most of the

present measurements are obtained from plates nar-

rower than those previously used by other researchers.

Thus, although the flow near the two ends of the plate is

3D, such a departure from two-dimensionality has no

significant influence on the averaged heat transfer coef-

ficient, at least for long plates.

On the other hand, the value of the exponent in the

present Nu–Ra fits, n � 0:17, is below the theoretical and

most commonly accepted value of n ¼ 1=5. However,

the theoretical result is based on the boundary layer

approximation, which precludes the possibility of re-

moving heat just by conduction through the air. Thus,

the theoretical dependence on Ra1=5
w , even if it were ac-

tually applicable to the present problem, would be at-

tained only at sufficiently high Rayleigh numbers. A

more appropriate equation to correlate heat transfer

data in the range of Rayleigh numbers investigated is

therefore given by Eq. (22). When cast in this form,

present heat transfer data do fit well to the analytical

dependence on Ra1=5
w and the coefficient of the fit, C, is in

a reasonable agreement with theory. Notwithstanding,

comparisons between the present problem and that of an

infinite boundary layer should be taken with caution.

Boundary layer analyses do not predict any flow sepa-

ration from the plate surface.
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